Hallo liebe Kodinerds,
ich besitze seit langen Raspberry Pi 3 & Ambilight da mit der Zeit die Leistung von Raspberry für mich nicht mehr ausreicht brauchte ich eine Upgrade.
Deswegen habe ich mir eine "Zotac Zbox CI327 Nano Barebone Intel N3450", SSD 32GB, 4GB RAM und 18M Mini IR Empfänger gekauft.
Als Lichterkette verwende ich WS2801 und eine 10A Netzteil für 104 LED´s.
Für die Übersetzung zwischen WS2801 und HTPC habe ich mit Arduino Nano / Uno R3 / Pro Micro verwendet.
Libreelec habe ich über eine Bootfähigen USB Stick auf dem HTPC instaliert.
Hyperion habe ich direkt über den Hyperion Windows-Programm instaliert. Als Ausgabe Quelle habe ich alle(ttyS0, ttyUSB0 usw) versucht.
Die Lichterkette habe ich mit Arduino und eine Test Code ausprobiert und die funktionieren einwandfrei.
Als USB Ausgang habe ich alle Ausgänge von Zbox versucht(außer USB Typ C).
Mache ich irgendwas falsch oder wird das so nicht Funktionieren??
Als Anleitung habe ich den hier genommen: Anleitung
Ich bin mir nur nicht sicher ob der Arduino Bord ATmega32U4 Chip hat.
Bild Hyperion Einstellung
Spoiler anzeigen
Bild Verbindung WS2801 Arduino
Spoiler anzeigen
Hier ist der Verwendete Code:
#include "FastLED.h"
#define ANALOG_MODE_AVERAGE 0
#define ANALOG_MODE_LAST_LED 1
/**************************************
S E T U P
set following values to your needs
**************************************/
#define INITIAL_LED_TEST_ENABLED true
#define INITIAL_LED_TEST_BRIGHTNESS 32 // 0..255
#define INITIAL_LED_TEST_TIME_MS 2000 // 10..
// Number of leds in your strip. set to "1" and ANALOG_OUTPUT_ENABLED to "true" to activate analog only
// As of 26/1/2017:
// 582 leaves ZERO bytes free and this
// 410 is ok
// tested with 500 leds and is fine (despite the warning)
#define MAX_LEDS 104
// type of your led controller, possible values, see below
#define LED_TYPE WS2801
// 3 wire (pwm): NEOPIXEL BTM1829 TM1812 TM1809 TM1804 TM1803 UCS1903 UCS1903B UCS1904 UCS2903 WS2812 WS2852
// S2812B SK6812 SK6822 APA106 PL9823 WS2811 WS2813 APA104 WS2811_40 GW6205 GW6205_40 LPD1886 LPD1886_8BIT
// 4 wire (spi): LPD8806 WS2801 WS2803 SM16716 P9813 APA102 SK9822 DOTSTAR
// For 3 wire led stripes line Neopixel/Ws2812, which have a data line, ground, and power, you just need to define DATA_PIN.
// For led chipsets that are SPI based (four wires - data, clock, ground, and power), both defines DATA_PIN and CLOCK_PIN are needed
// DATA_PIN, or DATA_PIN, CLOCK_PIN
//#define LED_PINS 6 // 3 wire leds
#define LED_PINS 6, 8 // 4 wire leds
#define COLOR_ORDER GRB // colororder of the stripe, set RGB in hyperion
#define OFF_TIMEOUT 15000 // ms to switch off after no data was received, set 0 to deactivate
// analog rgb uni color led stripe - using of hyperion smoothing is recommended
// ATTENTION this pin config is default for atmega328 based arduinos, others might work to
// if you have flickering analog leds this might be caused by unsynced pwm signals
// try other pins is more or less the only thing that helps
#define ANALOG_OUTPUT_ENABLED false
#define ANALOG_MODE ANALOG_MODE_LAST_LED // use ANALOG_MODE_AVERAGE or ANALOG_MODE_LAST_LED
#define ANALOG_GROUND_PIN 8 // additional ground pin to make wiring a bit easier
#define ANALOG_RED_PIN 9
#define ANALOG_GREEN_PIN 10
#define ANALOG_BLUE_PIN 11
// overall color adjustments
#define ANALOG_BRIGHTNESS_RED 255 // maximum brightness for analog 0-255
#define ANALOG_BRIGHTNESS_GREEN 255 // maximum brightness for analog 0-255
#define ANALOG_BRIGHTNESS_BLUE 255 // maximum brightness for analog 0-255
#define BRIGHTNESS 255 // maximum brightness 0-255
#define DITHER_MODE BINARY_DITHER // BINARY_DITHER or DISABLE_DITHER
#define COLOR_TEMPERATURE CRGB(255,255,255) // RGB value describing the color temperature
#define COLOR_CORRECTION TypicalLEDStrip // predefined fastled color correction
//#define COLOR_CORRECTION CRGB(255,255,255) // or RGB value describing the color correction
// Baudrate, higher rate allows faster refresh rate and more LEDs
//#define serialRate 460800 // use 115200 for ftdi based boards
//#define serialRate 115200 // use 115200 for ftdi based boards
#define serialRate 500000 // use 115200 for ftdi based boards
/**************************************
A D A L I G H T C O D E
no user changes needed
**************************************/
// Adalight sends a "Magic Word" (defined in /etc/boblight.conf) before sending the pixel data
uint8_t prefix[] = {'A', 'd', 'a'}, hi, lo, chk, i;
unsigned long endTime;
// Define the array of leds
CRGB leds[MAX_LEDS];
// set rgb to analog led stripe
void showAnalogRGB(const CRGB& led) {
if (ANALOG_OUTPUT_ENABLED) {
byte r = map(led.r, 0,255,0,ANALOG_BRIGHTNESS_RED);
byte g = map(led.g, 0,255,0,ANALOG_BRIGHTNESS_GREEN);
byte b = map(led.b, 0,255,0,ANALOG_BRIGHTNESS_BLUE);
analogWrite(ANALOG_RED_PIN , r);
analogWrite(ANALOG_GREEN_PIN, g);
analogWrite(ANALOG_BLUE_PIN , b);
}
}
// set color to all leds
void showColor(const CRGB& led) {
#if MAX_LEDS > 1 || ANALOG_OUTPUT_ENABLED == false
LEDS.showColor(led);
#endif
showAnalogRGB(led);
}
// switch of digital and analog leds
void switchOff() {
#if MAX_LEDS > 1 || ANALOG_OUTPUT_ENABLED == false
memset(leds, 0, MAX_LEDS * sizeof(struct CRGB));
FastLED.show();
#endif
showAnalogRGB(leds[0]);
}
// function to check if serial data is available
// if timeout occured leds switch of, if configured
bool checkIncommingData() {
boolean dataAvailable = true;
while (!Serial.available()) {
if ( OFF_TIMEOUT > 0 && endTime < millis()) {
switchOff();
dataAvailable = false;
endTime = millis() + OFF_TIMEOUT;
}
}
return dataAvailable;
}
// main function that setups and runs the code
void setup() {
Serial.begin(serialRate);
// analog output
if (ANALOG_OUTPUT_ENABLED) {
// additional ground pin to make wiring a bit easier
pinMode(ANALOG_GROUND_PIN, OUTPUT);
digitalWrite(ANALOG_GROUND_PIN, LOW);
pinMode(ANALOG_BLUE_PIN , OUTPUT);
pinMode(ANALOG_RED_PIN , OUTPUT);
pinMode(ANALOG_GREEN_PIN, OUTPUT);
}
int ledCount = MAX_LEDS;
if (ANALOG_MODE == ANALOG_MODE_LAST_LED) {
ledCount--;
}
#if MAX_LEDS > 1 || ANALOG_OUTPUT_ENABLED == false
FastLED.addLeds<LED_TYPE, LED_PINS, COLOR_ORDER>(leds, ledCount);
#endif
// color adjustments
FastLED.setBrightness ( BRIGHTNESS );
FastLED.setTemperature( COLOR_TEMPERATURE );
FastLED.setCorrection ( COLOR_CORRECTION );
FastLED.setDither ( DITHER_MODE );
// initial RGB flash
#if INITIAL_LED_TEST_ENABLED == true
for (int v=0;v<INITIAL_LED_TEST_BRIGHTNESS;v++)
{
showColor(CRGB(v,v,v));
delay(INITIAL_LED_TEST_TIME_MS/2/INITIAL_LED_TEST_BRIGHTNESS);
}
for (int v=0;v<INITIAL_LED_TEST_BRIGHTNESS;v++)
{
showColor(CRGB(v,v,v));
delay(INITIAL_LED_TEST_TIME_MS/2/INITIAL_LED_TEST_BRIGHTNESS);
}
#endif
showColor(CRGB(0, 0, 0));
Serial.print("Ada\n"); // Send "Magic Word" string to host
boolean transmissionSuccess;
unsigned long sum_r, sum_g, sum_b;
// loop() is avoided as even that small bit of function overhead
// has a measurable impact on this code's overall throughput.
for(;;) {
// wait for first byte of Magic Word
for (i = 0; i < sizeof prefix; ++i) {
// If next byte is not in Magic Word, the start over
if (!checkIncommingData() || prefix[i] != Serial.read()) {
i = 0;
}
}
// Hi, Lo, Checksum
if (!checkIncommingData()) continue;
hi = Serial.read();
if (!checkIncommingData()) continue;
lo = Serial.read();
if (!checkIncommingData()) continue;
chk = Serial.read();
// if checksum does not match go back to wait
if (chk != (hi ^ lo ^ 0x55)) continue;
memset(leds, 0, MAX_LEDS * sizeof(struct CRGB));
transmissionSuccess = true;
sum_r = 0;
sum_g = 0;
sum_b = 0;
int num_leds = min ( MAX_LEDS, (hi<<8) + lo + 1 );
// read the transmission data and set LED values
for (int idx = 0; idx < num_leds; idx++) {
byte r, g, b;
if (!checkIncommingData()) {
transmissionSuccess = false;
break;
}
r = Serial.read();
if (!checkIncommingData()) {
transmissionSuccess = false;
break;
}
g = Serial.read();
if (!checkIncommingData()) {
transmissionSuccess = false;
break;
}
b = Serial.read();
leds[idx].r = r;
leds[idx].g = g;
leds[idx].b = b;
#if ANALOG_OUTPUT_ENABLED == true && ANALOG_MODE == ANALOG_MODE_AVERAGE
sum_r += r;
sum_g += g;
sum_b += b;
#endif
}
// shows new values
if (transmissionSuccess) {
endTime = millis() + OFF_TIMEOUT;
#if MAX_LEDS > 1 || ANALOG_OUTPUT_ENABLED == false
FastLED.show();
#endif
#if ANALOG_OUTPUT_ENABLED == true
#if ANALOG_MODE == ANALOG_MODE_LAST_LED
showAnalogRGB(leds[MAX_LEDS-1]);
#else
showAnalogRGB(CRGB(sum_r/MAX_LEDS, sum_g/MAX_LEDS, sum_b/MAX_LEDS));
#endif
#endif
}
}
} // end of setup
void loop() {
// Not used. See note in setup() function.
}
Alles anzeigen